Mechanical Characterization of Released Thin Films by Contact Loading
نویسندگان
چکیده
The design of reliable micro electro-mechanical systems (MEMS) requires understanding of material properties of devices, especially for free-standing thin structures such as membranes, bridges, and cantilevers. The desired characterization system for obtaining mechanical properties of active materials often requires load control. However, there is no such device among the currently available tools for mechanical characterization of thin films. In this paper, a new technique, which is load-controlled and especially suitable for testing highly fragile free-standing structures, is presented. The instrument developed for this purpose has the capability of measuring both the static and dynamic mechanical response and can be used for electro/magneto/thermo mechanical characterization of actuators or active materials. The capabilities of the technique are demonstrated by studying the behavior of 75 nm thick amorphous silicon nitride Si3N4 membranes. Loading up to very large deflections shows excellent repeatability and complete elastic behavior without significant cracking or mechanical damage. These results indicate the stability of the developed instrument and its ability to avoid local or temporal stress concentration during the entire experimental process. Finite element simulations are used to extract the material properties such as Young’s modulus and residual stress of the membranes. These values for Si3N4 are in close agreement with values obtained using a different technique, as well as those found in the literature. Potential applications of this technique in studying functional thin film materials, such as shape memory alloys, are also discussed. DOI: 10.1115/1.2166652
منابع مشابه
Fabrication of MgF2-SiO2 Nanocomposite Thin Films and Investigation of Their Optical and Hydrophobic Properties
In this research, MgF2-2%SiO2/MgF2 thin films were applied on a glass substrate. At first, MgF2 thin films with the optical thickness were deposited on the glass slide substrates. Then, MgF2-2%SiO2 thin films were deposited on the glass coated with MgF2 thin films. Finally, the nanocomposite thin films were surface treated by the PFTS solution. Characterization of the thin film was done by X-Ra...
متن کاملEffects of UV irradiation treated polycarbonate substrates on properties of nanocrystalline TiO2 sol-gel derived thin films
In this study, in order to achieve effective coating of the homogeneous titanium dioxide (TiO2) thin film, UV irradiation pre-treatment was carried out to activate PC surfaces before coating. Sol-gel-based nanocrystalline TiO2 thin films were prepared by employing tetrabutyl-titanate as a precursor. Nanocrystalline TiO2 thin films were deposited by sol-gel spin coating on the treated substrates...
متن کاملMechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering
Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...
متن کاملPreparation and Characterization (Mechanical and Water Absorption Properties) of CMC/PVA/Clay Nanocomposite Films
The aim of this study was to produce Carboxy Methyl Cellulose (CMC) and Poly Vinyl Alcohol (PVA) films and to enhance their properties by reinforcing them with nanoclay particles. Thus, nanocomposite films were prepared with blending of CMC and PVA, as a matrix and several filler loadings of nanoclay particles. The various formulations of nanocomposite films obtained with casting m...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کامل